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Abstract

A numerical procedure based on the stochastic ®nite di�erences method is developed for the analysis of general
problems in free/forced convection heat transfer. The discretization of the ®eld equations through use of the ®nite

di�erences approximation method is described. One-dimensional axisymmetrical problem is solved as an
example. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The analysis of heat and ¯uid ¯ow whether sub-

jected to random or deterministic external boundary

conditions has been developed mainly under the

assumption that the medium parameters are determi-

nistic quantities.

For a signi®cant number of circumstances, this

assumption is not valid, and the probabilistic aspects

of the medium need to be taken into account. In order

to solve numerically convective heat transfer equations

one uses the ®nite element and ®nite di�erences

methods.

The application of numerical methods with probabil-

istic context leads to two classes of methods: ®rst and

second-order moment methods and reliability methods

[1,4]. This paper addresses only the ®rst category.

The ®nite di�erence method is used in the present

investigations. Combining the ®nite di�erences method

with stochastic analysis leads to stochastic ®nite di�er-
ences method.
The purpose of the present paper is to describe and

illustrate the use of stochastic ®nite di�erences method
for the analysis of convective heat transfer problems.
The stochastic ®nite di�erences method are rarely
found in the literature. The most studied stochastic

®nite element method [2,3,6,7,9±12].

2. Basic equations

The development presented here is concerned com-

bined convective and conductive transfer of thermal
energy in regions containing a moving ¯uid [5,13]. The
geometry of the ¯uid is limited to two-dimensions. The
shape at the boundary is arbitrary. The ¯uid is

assumed to be Newtonian are incompressible within
the Boussinesq approximation. The ¯ow is assumed to
be time-independent and laminar. Material properties,

such as viscosity and thermal conductivity can be
assumed to vary with temperature. In this study, inde-
pendence at these qualities on temperature is con-

sidered. The e�ects of viscous dissipation and radiative
transport have been neglected in the present develop-
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ment. To simplify the following derivation, only the
case at plane two-dimensional ¯ow will be treated in

detail.
Consider the previously indicated assumptions and

restrictions, the appropriate mathematical description

of the ¯uid motion is given by Navier±Stokes
equations:

Energy: rcpuj
@T

@x j
� @

@x j

�
kij
@T

@xj

�
� qv �1�

Continuity:
@ui
@x i
� 0 �2�

Momentum: ruj
@ui
@x j
� @tij
@x j
ÿ rgb�Tÿ T0 � �3�

Constitutive: tij � pdij � m
�
@ui
@x j
� @uj
@x i

�
�4�

Supplementary equation: r � r0
�
1ÿ b�Tÿ T0 �

� �5�

where:

uj is the velocity of ¯uid ¯ow in direction x i

x j is the coordinate
r0 is the density at reference temperature

cp is the speci®c heat at constant pressure
kij is the thermal conductivity tensor
qv is the rate of heat generated per unit volume

g is the acceleration due to gravity
T is the temperature
p is the pressure
m is the ¯uid (laminar) viscosity

b is the coe�cient of thermal expansion
dij is the Kronecker delta

subscript 0 is the reference conditions
To complete the formulation of the boundary-value

problem, suitable boundary conditions for the depen-

dent variables are required. For the hydrodynamic
part of the problem either velocity components or the
total surface stress (or traction) must be speci®ed on
the boundary of the ¯uid region. The thermal part of

the problem requires temperature or heat ¯ux to be
speci®ed on all parts at the boundary. Symbolically,
these conditions are expressed by:

ui � fi�s� on Su �6�

ti � Tij�s�nj�s� on St �7�

where S � Sv [ St: In Eqs. (6) and (17) s denotes a
generic point on the boundary, and nj are the com-
ponents of the outward unit normal to the boundary.

3. Finite di�erences approximation

The ®nite di�erences approximation of Eqs. (1)±(5)
will be based on introducing the domain D [ S of a
rectangular nonuniform grid with steps equals to hx 1

i

and hx 2

j along x1, x2 axis, respectively.
Eqs. (1)±(5) are reduced to the following matrix

form:

KT � L�u�T � F �8�

Au � 0 �9�

R�u�u� Du � H�T � � BP �10�
where T is the vector of unknown temperatures at the

grid nodes, u is the vector of unknown pair of vel-
ocities (u1, u2) at the grid nodes, P is the vector of
unknown pressures at grid nodes.

The matrix K is called the conductivity matrix and is
dependent on thermal conductivity coe�cient k

K � K�k� �11�
The matrix L is dependent on density r and heat ca-

pacity cp

L � L�r, cp � �12�

The matrix R is dependent on density r

R � R�r� �13�

The matrix D is dependent on viscosity m

D � D�m� �14�

The vector H is dependent on density r, gravity coef-
®cient g and volumetric expansion b

H � H�r, g, b� �15�

4. Stochastic ®nite di�erence approximation

Stochastic ®nite di�erence matrix equations of the
problem Eqs. (8)±(10) will be derived by assuming that
the material parameters are functions of random vari-

able vector:

b � �b1, b2, . . . ,bR � �16�
Eqs. (8)±(10) with the above assumptions take the
form:

K�b�T�b� � L
ÿ
u�b�, b

�
T�b� � F�b� �17�
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Au�b� � 0 �18�

R
ÿ
u�b�, b

�
u�b� � D�b�u�b�

� H
ÿ
T�b�, b

�
� B�b�P�b� �19�

The random function b�x� is approximated using shape
functions Ni�x� by

b�x� �
Xq
i�1

Ni�x�bi � Nb �20�

where bi are the nodal values of b�x�, that is the values
of b at x i, i � 1, . . . ,q:
The mean value of b denoted by E�b� is expressed as

E�b� �
Xb
i�1

NiE�bi � �21�

and the variance by

V�b� � a 2E�b� 2 �22�

where a is the coe�cient of variation.
All the random functions are expended about the

mean value E(b ) via a Taylor series and only up to
second-order terms are retained for any small par-
ameter g we have:

T�b� � E�T� � g
Xq
i�1

E�T�,bjDbi �
1

2
g 2
Xq
i, j�1

E�T�,bibjDbi Dbj

�23�

K�b� � E�K� � g
Xq
i�1

E�K�,biDbi �
1

2
g 2
Xq
i, j�1

E�K�,bibjDbi Dbj

�24�

F�b� � E�F� � g
Xq
i�1

E�F�,biDbi �
1

2
g 2
Xq
i, j�1

E�F�,bibjDbi Dbj

�25�

u�b� � E�u� � g
Xq
i�1

E�u�,biDbi �
1

2
g 2
Xq
i, j�1

E�u�,bibjDbi Dbj

�26�

D�b� � E�D� � g
Xq
i�1

E�D�,biDbi �
1

2
g 2
Xq
i, j�1

E�D�,bibjDbi Dbj

�27�

For any function g�G�b�, b� we have:

g
ÿ
G�b�, b

�
� E�g� � g

Xq
i�1

E
ÿ
g,bi � g,GG,bi

�
Dbi

� 1

2
g 2
Xq
i, j�1

E
ÿ
g,bibj � g,GbjG,bi

� g,GG,bibj � g,biGG,bj

� g,GGG,bjG,bj

�
Dbi Dbj �28�

With the assumptions that g � g1�G�b�� � g 2�b� and

g1�G�b�� is linear function of G we get from Eq. (28):

g
�
G�b�, b

�
� E�g� � g

Xq
i�1

E
ÿ
g,bi � g,GG,bi

�
Dbi

� 1

2
g 2
Xq
i, j�1

E
ÿ
g,bibj � g,GG,bibj

�
Dbi Dbj �29�

Using Eq. (29) we get the following relations:

H
ÿ
T�b�, b

�
� E�H� � g

Xq
i�1

E
ÿ
H,bi �H,TT,bi

�
Dbi

� 1

2
g 2
Xq
i, j�1

E
ÿ
H,bibj

�H,TT,bibj

�
Dbi Dbj �30�

R
ÿ
u�b�, b

�
� E�R� � g

Xq
i�1

E
ÿ
R,bi � R,uu,bi

�
Dbi

� 1

2
g 2
Xq
i, j�1

E
ÿ
R,bibj � R,uu,bibj

�
DbiDbj �31�

L
ÿ
u�b�, b

�
� E�L� � g

Xq
i�1

E
ÿ
L,bi � L,uu,bi

�
Dbi

� 1

2
g 2
Xq
i, j�1

E
ÿ
L,bibj � L,uu,bibj

�
Dbi Dbj �32�

where Dbi represents the ®rst-order variation of bi
about E�bi � and for any function g

E�g�x�� � g
ÿ
x, E�b�

�
�33�

E�g,b1 � �
@g

@b1
�34�

E�g,b1b2 � �
@ 2g

@b1@b2
�35�

Substitution of Eqs. (30)±(32) and (23)±(27) into Eqs.
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(17)±(19) and collecting terms of order 1, g and g 2, we
arrive:

Zeroth-order

E�K�E�T� � E�L�E�T� � E�F� �36�

E�A�E�u� � 0 �37�

E�R�E�u� � E�D�E�u� � E�H� � E�B�E�P� �38�

First-order

E�K�E�T�,bi�E�L�E�T�,bi
� E�F�,biÿ

�
E�K�,biE�T� � E�L�,biE�T�

� �39�

E�A�E�u�,bi� ÿE�A�,biE�u� �40�

E�R�E�u�,bi�E�D�E�u�,bi
� E

ÿ
H,bi �H,TT,bi

�
� E�B�,biE�P�,biÿ

�
E�R�,biE�u� � E�D�,biE�u�

� �41�

Second-order

E�K�E
ÿ

ÃT2

�
� E�L�E

ÿ
ÃT2

�
� 1

2

Xq
i, j�1

�
E�F�,bibj

�
Cov

ÿ
bi, bj

�

ÿ
Xq
i, j�1

�
1

2
E�K�,bibjE�T� �

1

2
E�L�,bibjE�T�

� E�K�,biE�T�,bj�E�L�,biE�T�,bj
�

Cov
ÿ
bi, bj

� �42�

where

ÃT2 � 1

2

Xq
i, j�1

E�T�,bibjCov
ÿ
bi, bj

� �43�

E�A�E� Ãu2 � � ÿ
Xq
i, j�1

�
1

2
E�A�,bibjE�u�

ÿ E�A�,biE�u�,bj
�

Cov
ÿ
bi, bj

� �44�

E�R�E� Ãu2 � � E�D�E� Ãu2 �

� 1

2

Xq
i, j�1

�
E
ÿ
H,bibj �H,TT,bibj

�
� 1

2
E�B�,bibjE�P�,bibj

�
Cov

ÿ
bi, bj

�
ÿ
Xq
i, j�1

h
E
ÿ
R,bi � R,uu,bi

�
E�u�,bj

� E�D�,biE�u�,bj
i
Cov

ÿ
bi, bj

�
ÿ 1

2

Xq
i, j�1

h
E
ÿ
R,bibj � R,TT,bibj

�
E�u�

� E�D�,bibjE�u�
i
Cov

ÿ
bi, bj

�

�45�

where

Ãu2 � 1

2

Xq
i, j�1

E� Ãu2 �,bibjCov
ÿ
bi, bj

�

Cov
ÿ
bi, bj

� � hVÿb�x i �
�
V
ÿ
b�x j �

�i 12Rÿb�x i �, b�x j �
� �46�

and R�b�x i �, b�x j �� is the autocorrelation.

5. Expectation values of temperature and velocity

The de®nitions for the expectation and autocovar-
iance of the temperature are given by

E�T � �
��1
ÿ1

T�b, t�f�b� db �47�

and

Cov
ÿ
T i, T j

�
�
��1
ÿ1
�T i ÿ E�T i ���T j ÿ E�T j ��f�b� db

�48�

where f �b� is the joint probability density function.
The second-order estimate of the mean value of T is

obtained from Eq. (1) to give

E�T � � T�E�b�� � 1

2

(Xq
i, j�1

E
ÿ
Tbi, bj

�
Cov

ÿ
bi, bj

�) �49�

The similar de®nition is used for the expectation of the
velocity
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E�u� �
��1
ÿ1

u�b, t�f�b� db �50�

and for autocovariance

Cov
ÿ
ui, u j

�
�
��1
ÿ1
�ui ÿ E�ui ��

� �u j ÿ E�u j ��f�b� db

�51�

6. Example

Consider problem at combined heat transfer and
¯uid ¯ow in tube of inner radius r1 � 10 cm and an
outer radius r2 � 18 cm (Fig. 1).

The problem is described by the following
equations:

1

r

d

dr

�
r
du

dr

�
� gbT � 0 �52�

1

r

d

dr

�
r
dT

dr

�
� 0 �53�

div u � 0 �54�
with the following boundary conditions:

ur�r1 � 0

ur�r2 � 0

Tr�r1 � T1

Tr�r2 � T2

The following random data are adopted:

E�T1 � � 5

E�T2 � � 2

E�g� � 1

E�b� � 1

cross-correlation functions

m
ÿ
gr, gs

� � exp
�ÿ abs�ri ÿ rj �=xg

�
m
ÿ
br, bs

� � exp
�ÿ abs�ri ÿ rj �=xb

�
with correlation lengths xg � xb � 1 and coe�cient of

variation asg � asb � 0:15:
Numerical results as to expectations of temperatures

and velocities are shown in Tables 1 and 2.

The solution is obtained by an implicit ®nite di�er-
ence technique with a constant grid and variable time
step sizes. A mesh size 2 � 10ÿ2 was found to be ad-
equate for the example. Since equations given above

are of parabolic type, the solutions of such equations
are well known and can be found in many text books
on numerical analysis.

7. Concluding remarks

The proposed numerical method allows one to calcu-

late temperature and velocity ®elds of expected values.
Stochastic mathematical model contains material and
boundary coe�cients, which are random functions of

coordinates. The discrete analog of the stochastic

Fig. 1. Scheme of axisymmetrical thermal problem.

Table 2

Expectations of velocities

Radius (cm) 10 12 14 16 18

Velocity� 10ÿ3 (cm/s) 0 6.24 8.22 2.13 0

Standard deviation 0 1.53 2.01 0.53 0

Table 1

Expectations of temperatures

Radius (cm) 10 12 14 16 18

Temperature (8C) 5.00 4.07 3.28 2.60 2.00

Standard deviation 1.22 1.02 0.79 0.63 0.47
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mathematical model is obtained by the method of
®nite di�erences.
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